Real-Time Estimation of Mass Eruption Rate and Ash Dispersion During Explosive Volcanism

Þórður Arason¹ (arason@vedur.is), Sara Barsotti¹, Mattia de' Michieli Vitturi², Sigurður Jónsson³, Melissa A. Pfeffer¹, Hermann Arngríomsson¹, Baldur Bergsson¹, Guðrún Nína Petersen¹ & Halldór Björnsson¹

¹ Icelandic Meteorological Office, Bustadavegur 9, IS-108 Reykjavík, Iceland
² Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy
³ Meteo Ltd., Túngata 38, IS-101 Reykjavík, Iceland

International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI), Scientific Assembly, Portland, Oregon, USA, 14-18 August 2017

VO52A-1
Why Provide Eruptive Source Parameters?

During explosive volcanic eruptions it is important to have access to timely and reliable time series of plume height and mass eruption rate to assess the intensity and potential impact of the event.

The primary users in our case are:

- The Icelandic Civil Protection and Emergency Management
- The Icelandic Aviation Service Provider (Isavia)
- London VAAC (Volcanic Ash Advisory Center)
- The scientific community using our time series as input data for various simulations of the impact on ground, atmosphere, local population and air traffic
Weather Radars
Two fixed position C-band and two mobile X-band

Keflavík SW-Iceland C-band radar. Photo Þórður Arason 9 August 2011

Fljótsdalsheiði E-Iceland C-band radar. Photo Geirfinnur S. Sigurðsson 8 October 2012

Specially adapted truck to take mobile radar off road. Photo Geirfinnur S. Sigurðsson 25 September 2012
Plume Height Time Series
Manually estimated from radar images

- Eyjafjallajökull 2010
- Arason et al. (2011)
- Vogfjörd et al. (2005)
- Grímsvötn 2004
- Petersen et al. (2012)
- Grímsvötn 2011

[Graphs and diagrams of plume height over time for different locations and years]
The VESPA System
Volcanic Eruptive Source Parameter Assessment

Integrated automatic real-time system

1. **Eruption Onset:** Manually estimated

2. **Plume Height:** Weather radar data are used to estimate plume height over volcano every hour

3. **Source Parameters:** Inversion for source parameters in the 1D DAKOTA PlumeMoM model using the radar plume height and vertical atmospheric profile from the ECMWF numerical weather prediction model

4. **Ash Dispersal:** Initialization of the dispersal models VOL-CALPUFF and NAME with the estimated source parameters and weather data
Plume Height Estimation
Hourly mean plume height and uncertainty

- For each radar scan two heights are determined, H1 the highest point where a significant radar reflection was detected within 10 km distance of the volcano, and H2 the height of the next radar elevation angle above volcano, where plume was not detected.
- Single radar scan height is estimated as the mean of H1 and H2, taking into account our detection function and the uncertainty as the standard deviation of a likely distribution between H1 and H2.
- Plume height on the hour is estimated as the mean, weighted by uncertainties, for all scans between 30 min before the hour and 30 min after the hour (4-48 scans).

Validation of radar detection at elevation 0.9° during the Eyjafjallajökull eruption using wind corrected plume height of web camera images.
Automatic Plume Height Estimates
http://brunnur.vedur.is/radar/vespa/
Plume Model – PlumeMoM

Accounts for effects of wind on plume

- Accounts for the effect of wind, which bends the plume trajectory and increases entrainment of ambient air
- Accounts for particle fallout. Radial and crosswind air entrainment are parameterized using two entrainment coefficients
- Solves equations for the conservation of mass, momentum, energy, and the variation of heat capacity and mixture gas constant
- Possible to describe a continuous size distribution of particles through the method of moments
- Vertical profile of wind above volcano is retrieved from the latest ECMWF numerical weather prediction model

1 de’ Michieli Vitturi et al. (2015; 2016)
2 ECMWF: European Centre for Medium-Range Weather Forecasts is an independent intergovernmental organisation supported by 34 European states. ECMWF is based in Reading UK.
EXERCISE: Eruption of Katla
Started 19 hours ago: 18 August at 02:10 UTC
Ash Dispersal Forecast

VOL-CALPUFF* dispersion model

Dispersion model initialized by

1. Eruption onset
2. Source parameters, e.g. vent radius and exit velocity
3. Grain-size distribution is assumed, based on previous eruption data set
4. ECMWF numerical weather prediction model

Ash dispersal forecasts are generated for the IMO web in 1 hr timesteps for the next few days

* Barsotti et al. (2008); Barsotti & Neri (2008)
Mobile radar isx1 installed with clear view over Bárðarbunga before the 2014-2015 volcanic eruption.

Photo Þorgils Ingvarsson 22 August 2014
Martian landscape?
Conclusions

• Real-time output of the Vespa system is currently available for selected volcanoes, and can be turned on in case of unrest or sudden eruption at a new volcano:

 http://brunnur.vedur.is/radar/vespa/

• Current plans include testing the Vespa system rigorously, implementing a PlumeMoM for strongly bent over plumes, adjust some parameters, and applying its calculations to recent eruptions in Iceland
References

Abstract

The Icelandic Meteorological Office (IMO) is responsible for monitoring over 30 active volcanic systems. For explosive volcanic eruptions, the principal scale parameters are plume height and mass eruption rate. IMO operates two fixed position C-band weather radars and two mobile X-band radars, which are crucial in monitoring plume height, due to their independence of daylight, weather and visibility. During initial phases of an explosive eruption, all available radars will be set to a more detailed scan, optimized to observe the volcanic eruption plume. Radar volume data above the active volcano are automatically analyzed at IMO-headquarters in Reykjavik. These data are available for the natural hazard specialists and meteorologists at IMO's 24/7 monitoring room in near real-time, and are communicated to London VAAC to support their ash transport simulations for aviation safety purposes. The newly-developed VESPA software uses the plume height estimates to calculate the eruptive source parameters through an inversion algorithm. This is done by using the coupled system DAKOTA-PlumeMoM which solves the 1D plume model equations iteratively by varying the input values of vent radius and vertical velocity. The model accounts for the effect of wind on the plume dynamics, using atmospheric vertical profiles extracted from the ECMWF numerical weather prediction model. Furthermore, the estimate of mass eruption rate provided by VESPA are used to initialize the VOL-CALPUFF dispersion model to assess the local-scale hazards due to tephra fallout.